Bradley Logo

Schedule of Classes

 

Spring Semester 2024

 

Mechanical Engineering
Julie Reyer • BECC 2225 • 309-677-2709
M E102Engineering Design Graphics (2 hours)
Prerequisite: Enrolled as a mechanical engineering major; Minimum of C in ME 101 or equivalent with consent of instructor.
MUST REGISTER FOR LECTURE & LAB A, B, or C.
 01 Tu9:30 AM -10:20 AM BEC3160 Kalyani Nair  
 02 Tu10:30 AM -11:20 AM BEC3160 Kalyani Nair  
 A Tu1:00 PM -2:50 PM BEC3225 Kalyani Nair  
 B Tu3:00 PM -4:50 PM BEC3225 Kalyani Nair  
 C Th1:00 PM -2:50 PM BEC3225 Kalyani Nair  
M E200Engineering Co-Op (0 hours)
Prerequisite: Sophomore standing in the College of Engineering and Technology, 2.0 overall grade point average at Bradley, approval of engineering and technology Co-op coordinator and Co-op advisor.
 01 *R* Arr     Rick Smith  
M E273Computational Methods in ME (3 hours)
Prerequisite: Minimum grade of C in both PHY 110 and MTH 223.
Corequisite: MTH 224.
 01 TT10:30 AM -11:45 AM BEC3225 Mark Moeckel  
 02 TT5:00 PM -6:15 PM BEC2180 Suresh B Reddy  
M E280Introduction Biomedical EngineeringCore: MI(3 hours)
Prerequisite: Science and Engineering Majors
 01 TT10:30 AM -11:45 AM BEC3226 Jacqueline Henderson  
M E301Thermodynamics I (3 hours)
Prerequisite: Minimum grade of C in CHM 110, 111; Minimum grade of C in PHY 201; Minimum grade of C in MTH 223.
 01 MWF10:00 AM -10:50 AM BEC3226 Saeid Vafaei  
 02 MW5:00 PM -6:15 PM BEC3160 Mohamed Ibrahim Daoud  
M E302Thermodynamics II (2 hours)
Prerequisite: minimum grade of C in ME 301.
 01 MW9:00 AM -9:50 AM BEC4160 Mark Moeckel  
M E303Instrumentation and Measurement (3 hours)
Prerequisite: COM 103, ECE 227
Corequisite: M E 273, M E 301
MUST REGISTER FOR LECTURE & LAB A or B.
 01 TT9:00 AM -10:15 AM BEC2259 Dean Kim  
 A Tu12:00 PM -1:50 PM BEC3248 Dean Kim  
 B Tu2:00 PM -3:50 PM BEC3248 Dean Kim  
M E308Thermodyn Fluid Flow (4 hours)
Prerequisite: Minimum grade of C in ME 301, MTH 224
 01 MWF1:00 PM -1:50 PM BEC2259 Saeid Vafaei  
 SECTION 01: REGISTER FOR LAB A or B
 A F3:00 PM -4:50 PM BEC0250 Saeid Vafaei  
 B Th12:00 PM -1:50 PM BEC0250 Saeid Vafaei  
M E341Engineering Systems Dynamics (3 hours)
Prerequisite: Minimum grade of C in PHY 201; Minimum grade of C in MTH 224; Minimum grade of C in CE 250.
 01 MWF11:00 AM -11:50 AM BEC3160 Shannon James Timpe  
M E342Design of Machine Elements (3 hours)
Prerequisite: Minimum grade of C in CE 270 and ME 351; prerequisite or concurrent enrollment in ME 303
 01 TT9:00 AM -10:15 AM BEC3226 Abdalla M Elbella  
M E344Kinematics and Dynamics of Machines (3 hours)
Prerequisite: ME 273, CE 250.
 01 MWF12:00 PM -12:50 PM BEC3226 Jacqueline Henderson  
M E351Engineering Materials Science I (3 hours)
Prerequisite: Minimum grade of C in PHY 110; Minimum grade of C in CHM 112 or Minimum grade of C in CHM 116.
Corequisite: PHY 201.
 01 MW1:30 PM -2:45 PM BEC4120 Abdalla M Elbella  
M E403Mechanical Engineering Systems Laboratory (3 hours)
Prerequisite: Minimum grade of C in both ME 303 and CE 270
Corequisite: 300-level English composition, ME 415, ME 441
REGISTER FOR LECTURE & LAB A, B, or C.
 01 MW9:00 AM -9:50 AM BEC3160 Ahmad Fakheri  
 and               Jeries J Abou-Hanna 
 A M10:00 AM -11:50 AM BEC3261 Ahmad Fakheri  
 B M2:00 PM -3:50 PM BEC3261 Ahmad Fakheri  
 C W10:00 AM -11:50 AM BEC3261 Ahmad Fakheri  
M E409Mechanical Engineering Projects (1 to 4 hours)
Prerequisite: Consent of instructor.
 01 *R* Arr     Kalyani Nair  
 02 Arr     Ahmad Fakheri  
 03 Arr     Ahmad Fakheri  
 "Mass Transfer"
 04 Arr     Shannon James Timpe  
M E411Mechanical Engineering Senior Design Project II (2 hours)
Prerequisite: ME 410. Instructor consent may be required.
 01 TT12:00 PM -12:50 PM BEC1260 Jeries J Abou-HannaCore: EL,WI 
 LabA F2:00 PM -4:00 PM BEC1260 Jeries J Abou-Hanna  
 and               Kalyani Nair 
 and               Brian Barney 
M E415Introduction to Heat Transfer (3 hours)
Prerequisite: ME 302. C or better in ME 308.
 01 TT3:00 PM -4:15 PM BEC3160 Ahmad Fakheri  
M E441Mechanical Control Systems (3 hours)
Prerequisite: ME 341. ECE 227.
 01 TT5:00 PM -6:15 PM BEC3160 Shannon James Timpe  
 02 TT5:00 PM -6:15 PM BEC4160 Satish Yadav  
M E502Problems in Advanced Dynamics (3 hours)
Prerequisite: ME 341; or graduate standing.
 01 TT10:30 AM -11:45 AM BEC2132 Abdalla M Elbella  
M E503Internal Combustion Engines (3 hours)
Prerequisite: ME 301 and ME 302; or graduate standing.
 01 MWF12:00 PM -12:50 PM BEC4140 Mark Moeckel  
M E515Intermediate Heat Transfer (3 hours)
Prerequisite: ME 415; or graduate standing.
 01 Canceled
M E547Fluid Power Control Systems (3 hours)
Prerequisite: ME 301, ME 308; or graduate standing.
 01 MW5:00 PM -6:15 PM BEC4120 Dean Kim  
M E554Fracture of Solids (3 hours)
Prerequisite: M E 354 and C E 270; or graduate standing.
 01 Canceled
M E557Advanced Design of Machine Elements (3 hours)
Prerequisite: ME 342 and ME 351, with a minimum grade of C; or graduate standing in ME. Requires consent of instructor if non-ME Student.
 01 TT1:30 PM -2:45 PM BEC3224 Jeries J Abou-Hanna  
M E573Methods of Engineering Analysis (3 hours)
Prerequisite: ME 341; ME 273; MTH 224; or graduate standing.
 01 MW1:30 PM -2:45 PM BEC3225 Jacqueline Henderson  
M E580Biomechanics (3 hours)
Prerequisite: senior or graduate standing in engineering or consent of instructor.
 01 MW3:00 PM -4:15 PM BEC2259 Kalyani Nair  
M E591Topics in Mechanical Engineering (3 to 9 hours)
Prerequisite: consent of instructor.
 01 MW1:30 PM -2:45 PM BEC3224 Shannon James Timpe  
 "Surface Engineering"
M E681Research (0 to 6 hours)
 01 *R* Arr     Shannon James Timpe  
 02 Th3:00 PM -4:00 PM ONLONL David Zietlow Online Course
 Synchronous online
 03 Arr     Kalyani Nair  
 
Principles and methods of graphic communications, integrated with creative design problem solving: multi-view projections; pictorial drawing; fundamentals of descriptive geometry, sections, and dimensioning.
Full-time cooperative education assignment for mechanical engineering students who alternate periods of full-time school with periods of full-time academic or career-related work in industry. Satisfactory/Unsatisfactory.
Computational techniques and programming methods for mechanical engineering problems.
Biomedical Engineering is an interdisciplinary field that encompasses biomechanics, biofluidics, medical imaging, bio-instrumentation etc for applications in the medical field. The content introduces a biological overview of the body, from cells to systems, and design and applications of engineering principles to biological systems. The broad objective of this course is to introduce students to the wide landscape early on in their curriculum.
Emphasis on concepts, laws, and problem solving methodology; properties of materials, especially gases and vapors; simple equations of state; 1st and 2nd laws; introduction to cycles and systems.
Continuation of ME 301 with emphasis on engineering applications: including more detailed analysis of vapor cycles, power cycles, refrigeration cycles, and heat pump cycles, enhanced second law analysis, and more complex processes that include mixtures, humidification, combustion, and equilibrium.
Theory and practice of measurements and instrumentation. Definition of a measurement system that meets specified needs: identification, selection, and specification of instrumentation components. Weekly laboratory.
Thermodynamics of fluid flow. Basic concepts of fluid mechanics; utility of the control volume approach to solving conservation equations governing the behavior of compressible and incompressible fluid flows. Design applications in thermal systems, aerodynamics, and convective heat transfer.
Engineering systems dynamics, including mechanical, electrical, fluid, and thermal elements. Concepts of modeling. Mathematical methods for understanding and creating desired response behavior of linear systems.
Application of stress analysis, deflection analysis, dynamic analysis, and materials to the design of mechanical components and machines. How available manufacturing processes influence nature of machine elements.
Kinematic and dynamic analysis and synthesis of mechanisms and machines; kinematics of linkages, cams and gearing systems; different analysis methods. Static and dynamic forces; balancing of rotating and reciprocating machines. Integration of these topics in solving open-ended design problems.
Understanding how atomic and crystalline structure influences the mechanical properties of metals, polymers, ceramics, composite, and biomedical materials. Thermal processes that influence the underlying structure of solids. Using materials in the engineering design process.
Student team investigations of thermal and mechanical systems emphasizing definition, planning, design, and execution of experiments involving system modeling and analysis. Written reports and oral presentations are required.
Special topics or projects of an experimental, analytical, or creative nature. May be repeated up to 16 credit hours.
Continuation and completion of senior project begun in ME 410.
Steady state and transient conduction; external and internal forced convection and free convection; radiation; heat exchanger design.
Linear feedback control design and analysis for dynamic systems with applications; examples taken from applications encountered by mechanical and manufacturing engineers. Time and frequency response techniques. System performance analysis.
Application of analytical and graphical methods to problems involving velocities, accelerations, working and inertia forces.
Thermodynamic analysis, thermo-chemistry, and performance characteristics of spark ignition and compression ignition engines.
In-depth treatment of the three modes of heat transfer; design applications. Development of analytical and specific numerical skills needed for solving design problems involving heat transfer.
Definition and scope of fluid power control systems. Fluid properties. Continuity and power balance equations. Components function, operation, and dynamic performance. Use of perturbation theory for developing linearized transfer functions. Application of conventional control theory.
Mechanical failure caused by stresses, strains, and energy transfers in mechanical parts: conventional design concepts and relationship to occurrence of fracture; mechanics of fracture; fracture toughness; macroscopic and microscopic aspects of fracture; high and low cycle fatigue failures; creep; stress rupture; brittle fracture; wear; case studies of failure analysis. Emphasis on time-dependent failures.
Review of mechanical testing, 3-D stress-strain relationship, complex and principal states of stress, yielding and fracture under combined stresses, fracture of cracked members, stress and strain based approaches to fatigue, creep damage analysis, and plastic damage analysis as applied to the design of machine elements.
Application of principles of analog and digital computers and numerical methods to solve mechanical engineering problems.
Human body as a mechanical system. Biomechanics of cells, soft issue and hard tissue Biomechanics of movement. Laboratory exercises on design and analysis of implants.
Topics of special interest which may vary each time course is offered. Topic stated in current Schedule of Classes. Graduate students may repeat the course under different topic names up to a maximum of 9 credits.
Research on a project selected by student and advisor.
This course meets a Core Curriculum requirement.
OC - Communication - Oral Communication
W1 - Communication - Writing 1
W2 - Communication - Writing 2
FA - Fine Arts
GS - Global Perspective - Global Systems
WC - Global Perspective - World Cultures
HU - Humanities
NS - Knowledge and Reasoning in the Natural Sciences
SB - Knowledge and Reasoning in the Social and Behavioral Sciences
MI - Multidisciplinary Integration
QR - Quantitative Reasoning
This section meets a Core Curriculum requirement.
EL - Experiential Learning
IL - Integrative Learning
WI - Writing Intensive
Picture of Instructor


Choose a different department

Choose a different semester

Search Class Database

Course Delivery Method Definitions