Bradley Logo

Schedule of Classes

 

Spring Semester 2023

 

Mathematics
Ollie Nanyes • Bradley Hall 452 • 309-677-2503
MTH101The Art of Mathematical ThinkingGenEd: MA   Core: QR(3 hours)
 01 MWF12:00 PM -12:50 PM BR322 Anthony J Bedenikovic  
 02 W6:00 PM -8:30 PM BR235 Rose Durand  
MTH109College Algebra (3 hours)
Prerequisite: The mathematics placement exam score is at least 46.
 01 *R* MWF9:00 AM -9:50 AM BR125 Sheryl Davis  
 02 *R* MWF12:00 PM -12:50 PM BR225 Sheryl Davis  
MTH111Elementary StatisticsGenEd: MA   Core: QR(3 hours)
 01 MWF9:00 AM -9:50 AM BR050 Larry Xue  
 02 MWF1:00 PM -1:50 PM BR142 Benoit Ahanda  
 03 MWF2:00 PM -2:50 PM BR340 Benoit Ahanda  
 04 MWF3:00 PM -3:50 PM BR250 Larry Xue  
 05 TT10:30 AM -11:45 AM BR320 Libin Mou  
 06 TT1:30 PM -2:45 PM BR250 Libin Mou  
MTH112Precalculus (4 hours)
Prerequisite: Grade of C or better in MTH 109; or the mathematics placement exam score is at least 61.
 01 MWTF9:00 AM -9:50 AM BR139 Alicia Culbertson  
MTH114Applied Finite MathematicsCore: QR(3 hours)
Prerequisite: Grade of C or better in MTH 109 or 112; or the mathematics placement exam score is at least 61.
 01 MWF1:00 PM -1:50 PM BR146 John Goldman  
 02 MWF2:00 PM -2:50 PM BR225 John Goldman  
MTH115Brief Calculus With Applications IGenEd: MA   Core: QR(4 hours)
Prerequisite: Grade of C or better in MTH 109 or 112; or the mathematics placement exam score is at least 61.
 01 MWTF12:00 PM -12:50 PM BR050 Alicia Culbertson  
 02 MWTF2:00 PM -2:50 PM BR125 Alicia Culbertson  
MTH116Brief Calculus With Applications IIGenEd: MA   Core: QR(3 hours)
Prerequisite: C or better in MTH 115.
 01 MWF9:00 AM -9:50 AM BR250 Ollie Nanyes  
 02 MWF12:00 PM -12:50 PM BR222 Ollie Nanyes  
 03 MWF12:00 PM -12:50 PM BR340 Libin Mou  
MTH120Discrete Mathematics (3 hours)
Prerequisite: Grade of C or better in MTH 112; or the mathematics placement exam score is at least 68.
 01 MWF10:00 AM -10:50 AM BR250 John Goldman  
MTH121Calculus IGenEd: MA   Core: QR(4 hours)
Prerequisite: Grade of C or better in MTH 112; or the mathematics placement exam score is at least 76.
 01 MWTF9:00 AM -9:50 AM BR340 Daniel Yee  
 02 MWTF10:00 AM -10:50 AM BR032 Daniel Yee  
 03 MWTF1:00 PM -1:50 PM BR050 Morgan Schreffler  
MTH122Calculus IIGenEd: MA   Core: QR(4 hours)
Prerequisite: Grade of C or better in MTH 119 or MTH 121 or its equivalent.
 01 MWTF9:00 AM -9:50 AM BR091 Morgan Schreffler  
 02 MWTF11:00 AM -11:50 AM BR250 Morgan Schreffler  
 03 MWTF2:00 PM -2:50 PM BR050 Michael S Lang  
 04 MWF11:00 AM -11:50 AM BR046 Michael S Lang  
 and Th11:00 AM -11:50 AM     BR032      
MTH207Elementary Linear Algebra With Applications (3 hours)
Prerequisite: MTH 122, or consent of instructor.
 01 MWF11:00 AM -11:50 AM BR050 Daniel Yee  
MTH223Calculus IIICore: QR(4 hours)
Prerequisite: Grade of C or better in MTH 122.
 01 MWTF9:00 AM -9:50 AM BR222 Mathew T Timm  
 02 MWTF2:00 PM -2:50 PM BR222 Mathew T Timm  
MTH224Elementary Differential Equations (3 hours)
Prerequisite: MTH 223
 01 MWF9:00 AM -9:50 AM BR322 Thomas E Carty  
 02 MWF1:00 PM -1:50 PM BR322 Thomas E Carty  
MTH300Topics for Middle School Math Teachers (3 hours)
Prerequisite: C or better in MTH 111 and C or better in one of MTH 115, 119, or 121 and permission of the Chair.
 01 *R* TT9:00 AM -10:15 AM BR120 Anthony J Bedenikovic  
 "Number Theory"
MTH302Introduction to Graph Theory (3 hours)
Prerequisite: MTH 120, 122; or MTH 223.
 01 MWF1:00 PM -1:50 PM BR340 Michael S Lang  
MTH325Probability and Statistics I (3 hours)
Prerequisite: MTH 223
 01 MWF10:00 AM -10:50 AM BR320 Ollie Nanyes  
MTH405Modern Algebra II (3 hours)
Prerequisite: MTH 404.
 01 MW4:00 PM -5:15 PM BR132 Larry Xue  
MTH414Partial Differential Equations (3 hours)
Prerequisite: MTH 224 or MTH 345
 01 MWF2:00 PM -2:50 PM BR322 Thomas E Carty  
MTH421Advanced Calculus (3 hours)
Prerequisite: MTH 420 or consent of instructor.
 01 Canceled
MTH427Applied Statistical Methods (3 hours)
Prerequisite: MTH325; MTH326 or consent of instructor.
 01 MWF10:00 AM -10:50 AM BR222 Benoit Ahanda  
MTH490Topics in Mathematics (3 hours)
Prerequisite: consent of instructor.
 01 MWF11:00 AM -11:50 AM BR210 Mathew T Timm  
 "Logic"
MTH494Senior Project in Mathematics I (0 hours)
Prerequisite: Senior standing (junior standing with consent of instructor).
 01 *R* Arr     Anthony J Bedenikovic  
MTH495Senior Project in Mathematics II (3 hours)
Prerequisite: MTH 494; senior standing.
 01 *R* Arr     Benoit AhandaCore: EL,WI 
 02 *R* Arr     Anthony J BedenikovicCore: EL,WI 
 03 *R* Arr     Thomas E CartyCore: EL,WI 
MTH514Partial Differential Equations (3 hours)
Prerequisite: MTH 224 or 345.
 01 MWF2:00 PM -2:50 PM BR322 Thomas E Carty  
 
Encouraging audience appreciation of mathematics by investigating some of the great ideas of mathematical history, seeing contemporary applications, and getting a feel for the way mathematicians think.
For students who need to strengthen their algebra skills: factoring polynomials; solving quadratic and other equations; exponents, logarithms, and graphing.
Data collection processes (observational studies, experimental design, sampling techniques, bias), descriptive methods using quantitative and qualitative data, bivariate data, correlation, and least- squares regression, basic probability theory, probability distributions (normal distributions and normal curve, binomial distribution), confidence intervals and hypothesis tests using p-values and selected applications. Additionally, statistical software will be used with an emphasis on interpretation and evaluation of statistical results.
For students needing further background in mathematics before enrolling in calculus (especially MTH 121). Thorough study of algebraic, transcendental, and trigonometric functions; emphasis on graphing and use of algebra.
A survey of the most common mathematical techniques used in business. Topics include: linear functions, non-linear functions (polynomials, exponentials, logarithms), systems of linear equations, linear programming, sets and probability, introduction to basic statistics.
Differential and integral calculus with emphasis on understanding through graphs. Topics in analytic geometry, limits, derivatives, antiderivatives, definite integrals, exponential and logarithmic functions, and partial derivatives.
Continuation of MTH 115. Includes trig functions, integration techniques, series, differential equations, and multivariable calculus.
Introduction to graph theory, Boolean algebra, mathematical induction, and elementary combinatorics.
Topics for this first course in calculus include functions, limits, continuity, the derivative, differentiation of algebraic, trigonometric, logarithmic and exponential functions with applications including curve sketching, anti-differentiation and applications of integrals, the Riemann sum, and the Fundamental Theorem of Calculus.
Topics for this second course in calculus include techniques of integration, applications of the definite integral, infinite series, Taylor series, polar coordinates, and parametrized curves in the plane.
Matrix algebra, determinants, theory of simultaneous equations, vector spaces, bases, Gram-Schmidt orthogonalization, eigenvalues, eigenvectors, transformations, and applications.
Topics for this third course in calculus including vector analysis of three-dimensional Euclidean space, functions of several variables, partial differentiation, multiple integrals, line integrals and surface integrals, the integral theorems of vector calculus.
Solutions of limited classes of first order equations; second order linear equations; Laplace transform methods; numerical methods; autonomous systems, including linear systems of two variables.
Topics of special interest which may vary each time course is offered, rotating among geometry, algebra/number theory, and problem-solving. Historical motivations will be provided within each topic. For middle school teacher certification; does not count toward a math major or math minor. May be repeated under different topics for a maximum of 9 hours credit.
Theory and applications of graphs, including historical motivations. Fundamental properties of graphs, circuits, cycles, trees, and graph algorithms; planarity and coloring.
An upper-level treatment of fundamental concepts in probability theory and statistics: discrete and continuous random variables; particular probability distributions of each type; multivariate probability distributions; conditional and marginal probabilities; moment-generating functions; Central Limit Theorem.
Advanced theory of groups, rings, and fields with an emphasis on fields and field extensions. Other topics may include Galois theory and classical problems of insolvability.
Theory of, and solution techniques for, partial differential equations of first and second order, including the heat equation, wave equation and Laplace equation in rectangular, cylindrical, and spherical coordinates. Topics include classification of PDE in terms of order, linearity, and homogeneity; solution techniques include separation of variables, Fourier series, and integral operators; and a subset of more advanced topics such as transform methods and numerical methods. Credit will be given for only one of MTH 414, MTH 514.
Functions of several variables. Calculus of transformations, implicit and inverse function theorems, line and surface integrals, Fourier analysis, fixed point theorems, and applications.
Regression analysis, time series analysis, and forecasting
Topics of special interest which may vary each time course is offered. Topic stated in current Schedule of Classes.
Topics in mathematics selected, studied, and discussed by students under faculty guidance. Each student explores an area of mathematics and selects a topic in which he or she has a particular interest.
A selected topic in mathematics is studied by a student under faculty guidance. Each student writes a paper and gives a presentation on his or her topic.
Theory of, and solution techniques for, partial differential equations of first and second order, including the heat equation, wave equation and Laplace equation in rectangular, cylindrical, and spherical coordinates. Topics include classification of PDE in terms of order, linearity, and homogeneity; solution techniques include separation of variables, Fourier series, and integral operators; and a subset of more advanced topics such as transform methods and numerical methods.
This course meets a General Education requirement.
C1 - English Composition
C2 - English Composition
SP - Speech
MA - Mathematics
WC - Western Civilization
NW - Non-Western Civilization
FA - Fine Arts
HL - Human Values - Literary
HP - Human Values - Philosophical
CD - Cultural Diversity
SF - Social Forces
FS - Fundamental Concepts in Science
TS - Science & Technology in the Contemporary World
This course meets a Core Curriculum requirement.
OC - Communication - Oral Communication
W1 - Communication - Writing 1
W2 - Communication - Writing 2
FA - Fine Arts
GS - Global Perspective - Global Systems
WC - Global Perspective - World Cultures
HU - Humanities
NS - Knowledge and Reasoning in the Natural Sciences
SB - Knowledge and Reasoning in the Social and Behavioral Sciences
MI - Multidisciplinary Integration
QR - Quantitative Reasoning
This section meets a Core Curriculum requirement.
EL - Experiential Learning
IL - Integrative Learning
WI - Writing Intensive
Picture of Instructor


Choose a different department

Choose a different semester

Search Class Database

Course Delivery Method Definitions