Bradley Logo

Schedule of Classes

 

Spring Semester 2023

 

Mechanical Engineering
Julie Reyer • BECC 2225 • 309-677-2709
M E102Engineering Design Graphics (2 hours)
Prerequisite: Enrolled as a mechanical engineering major; Minimum of C in ME 101 or equivalent with consent of instructor.
 01 Tu9:00 AM -9:50 AM BEC1170 Kalyani Nair  
 Registration required in lecture & lab (A or B or C or D).
 02 Tu12:00 PM -12:50 PM BEC1150 Kalyani Nair  
 Registration required in lecture & lab (A or B or C or D).
 A Tu1:00 PM -2:50 PM BEC3225 Kalyani Nair  
 B Tu3:00 PM -4:50 PM BEC3225 Kalyani Nair  
 C Th1:00 PM -2:50 PM BEC3225 Kalyani Nair  
 D Th11:00 AM -12:50 PM BEC3225 Kalyani Nair  
M E200Engineering Co-Op (0 hours)
Prerequisite: Sophomore standing in the College of Engineering and Technology, 2.0 overall grade point average at Bradley, approval of engineering and technology Co-op coordinator and Co-op advisor.
 01 *R* Arr     Rick Smith  
M E273Computational Methods in ME (3 hours)
Prerequisite: Minimum grade of C in both PHY 110 and MTH 223.
Corequisite: MTH 224.
 01 TT10:30 AM -11:45 AM BEC3226 Mark Moeckel  
M E280Introduction Biomedical EngineeringCore: MI(3 hours)
Prerequisite: Science and Engineering Majors
 01 TT10:30 AM -11:45 AM BEC2259 Jacqueline Henderson  
M E301Thermodynamics I (3 hours)
Prerequisite: Minimum grade of C in CHM 110, 111; Minimum grade of C in PHY 201; Minimum grade of C in MTH 223.
 01 MWF10:00 AM -10:50 AM BEC1180 Saeid Vafaei  
M E302Thermodynamics II (2 hours)
Prerequisite: minimum grade of C in ME 301.
 01 MW9:00 AM -9:50 AM BEC3226 David Zietlow  
M E303Instrumentation and Measurement (3 hours)
Prerequisite: COM 103, ECE 227
Corequisite: M E 273, M E 301
 01 TT9:00 AM -10:15 AM BEC4160 Dean Kim  
 Registration required in lecture & lab (A or B or C).
 A Tu12:00 PM -1:50 PM BEC3248 Dean Kim  
 B Tu2:00 PM -3:50 PM BEC3248 Dean Kim  
 C *R* Th12:00 PM -1:50 PM BEC3248 Dean Kim  
M E308Thermodyn Fluid Flow (4 hours)
Prerequisite: Minimum grade of C in ME 301, MTH 224
 01 MWF1:00 PM -1:50 PM BEC3226 Saeid Vafaei  
 Registration required in lecture & lab (A or C). Students in Section 01 MUST register for a lab.
 40 MWF1:00 PM -1:50 PM BEC0250 Mark Moeckel  
 and Th2:00 PM -3:50 PM     BEC0250     Staff 
 A Th8:00 AM -9:50 AM BEC0250 Saeid Vafaei  
 B Canceled
 C Th12:00 PM -1:50 PM BEC0250 Saeid Vafaei  
M E341Engineering Systems Dynamics (3 hours)
Prerequisite: Minimum grade of C in PHY 201; Minimum grade of C in MTH 224; Minimum grade of C in CE 250.
 01 MWF11:00 AM -11:50 AM BEC3226 Shannon James Timpe  
M E342Design of Machine Elements (3 hours)
Prerequisite: Minimum grade of C in CE 270 and ME 351; prerequisite or concurrent enrollment in ME 303
 01 TT9:00 AM -10:15 AM BEC3226 Abdalla M Elbella  
M E344Kinematics and Dynamics of Machines (3 hours)
Prerequisite: ME 273, CE 250.
 01 MWF12:00 PM -12:50 PM BEC4160 Jacqueline Henderson  
M E351Engineering Materials Science I (3 hours)
Prerequisite: Minimum grade of C in PHY 110; Minimum grade of C in CHM 112 or Minimum grade of C in CHM 116.
Corequisite: PHY 201.
 01 MWF9:00 AM -9:50 AM BEC4120 Abdalla M Elbella  
M E403Mechanical Engineering Systems Laboratory (3 hours)
Prerequisite: Minimum grade of C in both ME 303 and CE 270
Corequisite: 300-level English composition, ME 415, ME 441
 01 MW9:00 AM -9:50 AM BEC1180 Ahmad Fakheri  
 and               Jeries J Abou-Hanna 
 Registration required in lecture & lab (A or B or C).
 A M10:00 AM -11:50 AM BEC3261 Ahmad Fakheri  
 and               Jeries J Abou-Hanna 
 B M2:00 PM -3:50 PM BEC3261 Ahmad Fakheri  
 and               Jeries J Abou-Hanna 
 C W10:00 AM -11:50 AM BEC3261 Ahmad Fakheri  
 and               Jeries J Abou-Hanna 
M E409Mechanical Engineering Projects (1 to 4 hours)
Prerequisite: Consent of instructor.
 01 *R* Arr     Martin Morris  
 02 *R* Arr     Shannon James Timpe  
 03 Arr     Jacqueline Henderson  
 04 *R* Arr     Julie Reyer  
M E411Mechanical Engineering Senior Design Project II (2 hours)
Prerequisite: ME 410. Instructor consent may be required.
Register in the section corresponding with your team number.
 01 TT12:00 PM -12:50 PM BEC1260 Martin MorrisCore: EL,WI 
 02 TT12:00 PM -12:50 PM BEC1260 Martin MorrisCore: EL,WI 
 03 TT12:00 PM -12:50 PM BEC1260 Brian BarneyCore: EL,WI 
 04 TT12:00 PM -12:50 PM BEC1260 Martin MorrisCore: EL,WI 
 05 TT12:00 PM -12:50 PM BEC1260 Martin MorrisCore: EL,WI 
 06 TT12:00 PM -12:50 PM BEC1260 Martin MorrisCore: EL,WI 
 07 TT12:00 PM -12:50 PM BEC1260 Brian BarneyCore: EL,WI 
 08 TT12:00 PM -12:50 PM BEC1260 Brian BarneyCore: EL,WI 
 09 TT12:00 PM -12:50 PM BEC1260 Brian BarneyCore: EL,WI 
 10 TT12:00 PM -12:50 PM BEC1260 Brian BarneyCore: EL,WI 
 11 TT12:00 PM -12:50 PM BEC1260 Brian BarneyCore: EL,WI 
 12 TT12:00 PM -12:50 PM BEC1260 Jeries J Abou-HannaCore: EL,WI 
 13 TT12:00 PM -12:50 PM BEC1260 Jeries J Abou-HannaCore: EL,WI 
 14 TT12:00 PM -12:50 PM BEC1260 Jeries J Abou-HannaCore: EL,WI 
 15 TT12:00 PM -12:50 PM BEC1260 Jeries J Abou-HannaCore: EL,WI 
 16 TT12:00 PM -12:50 PM BEC1260 Jeries J Abou-HannaCore: EL,WI 
 17 TT12:00 PM -12:50 PM BEC1120 Brian BarneyCore: EL,WI 
 and               Martin Morris 
 A F2:00 PM -4:00 PM BEC1260 Martin Morris  
 and               Jeries J Abou-Hanna 
 and               Brian Barney 
 All students must be in Lab A and their team's section.
M E415Introduction to Heat Transfer (3 hours)
Prerequisite: ME 302. C or better in ME 308.
 01 TT3:00 PM -4:15 PM BEC4160 Ahmad Fakheri  
M E441Mechanical Control Systems (3 hours)
Prerequisite: ME 341. ECE 227.
 01 TT5:00 PM -6:15 PM BEC3160 Dean Kim  
M E503Internal Combustion Engines (3 hours)
Prerequisite: ME 301 and ME 302; or graduate standing.
 01 MWF12:00 PM -12:50 PM BEC1150 Mark Moeckel  
M E509Solar Engineering (3 hours)
Prerequisite: ME 415 or consent of instructor.
 01 TT9:00 AM -10:15 AM BEC2138 David Zietlow  
M E521Intermediate Fluid Mechanics (3 hours)
Prerequisite: MTH 224 and ME 308; or graduate standing.
 01 Canceled
M E533Propulsion Systems (3 hours)
Prerequisite: ME 308; or graduate standing.
 01 MWF1:00 PM -1:50 PM BEC3160 Martin Morris  
M E540Advanced Mechanical Vibrations (3 hours)
Prerequisite: ME 341; MTH 224; or graduate standing.
 01 Canceled
M E547Fluid Power Control Systems (3 hours)
Prerequisite: ME 301, ME 308; or graduate standing.
 01 MW3:00 PM -4:15 PM BEC2259 Dean Kim  
M E557Advanced Design of Machine Elements (3 hours)
Prerequisite: ME 342 and ME 351, with a minimum grade of C; or graduate standing in ME. Requires consent of instructor if non-ME Student.
 01 TT1:30 PM -2:45 PM BEC2132 Jeries J Abou-Hanna  
M E580Biomechanics (3 hours)
Prerequisite: senior or graduate standing in engineering or consent of instructor.
 01 MW3:00 PM -4:15 PM BEC4120 Kalyani Nair  
M E591Topics in Mechanical Engineering (3 to 9 hours)
Prerequisite: consent of instructor.
 01 *R* Arr     Abdalla M Elbella  
 Composite Materials
M E681Research (0 to 6 hours)
 01 *R* Arr     Shannon James Timpe  
 02 F3:15 PM -3:45 PM BEC0120 David Zietlow  
M E682Research (0 to 6 hours)
Prerequisite: consent of instructor.
Course Surcharge: $50 per credit hour
 01 Arr     Kalyani Nair  
 
Principles and methods of graphic communications, integrated with creative design problem solving: multi-view projections; pictorial drawing; fundamentals of descriptive geometry, sections, and dimensioning.
Full-time cooperative education assignment for mechanical engineering students who alternate periods of full-time school with periods of full-time academic or career-related work in industry. Satisfactory/Unsatisfactory.
Computational techniques and programming methods for mechanical engineering problems.
Biomedical Engineering is an interdisciplinary field that encompasses biomechanics, biofluidics, medical imaging, bio-instrumentation etc for applications in the medical field. The content introduces a biological overview of the body, from cells to systems, and design and applications of engineering principles to biological systems. The broad objective of this course is to introduce students to the wide landscape early on in their curriculum.
Emphasis on concepts, laws, and problem solving methodology; properties of materials, especially gases and vapors; simple equations of state; 1st and 2nd laws; introduction to cycles and systems.
Continuation of ME 301 with emphasis on engineering applications: including more detailed analysis of vapor cycles, power cycles, refrigeration cycles, and heat pump cycles, enhanced second law analysis, and more complex processes that include mixtures, humidification, combustion, and equilibrium.
Theory and practice of measurements and instrumentation. Definition of a measurement system that meets specified needs: identification, selection, and specification of instrumentation components. Weekly laboratory.
Thermodynamics of fluid flow. Basic concepts of fluid mechanics; utility of the control volume approach to solving conservation equations governing the behavior of compressible and incompressible fluid flows. Design applications in thermal systems, aerodynamics, and convective heat transfer.
Engineering systems dynamics, including mechanical, electrical, fluid, and thermal elements. Concepts of modeling. Mathematical methods for understanding and creating desired response behavior of linear systems.
Application of stress analysis, deflection analysis, dynamic analysis, and materials to the design of mechanical components and machines. How available manufacturing processes influence nature of machine elements.
Kinematic and dynamic analysis and synthesis of mechanisms and machines; kinematics of linkages, cams and gearing systems; different analysis methods. Static and dynamic forces; balancing of rotating and reciprocating machines. Integration of these topics in solving open-ended design problems.
Understanding how atomic and crystalline structure influences the mechanical properties of metals, polymers, ceramics, composite, and biomedical materials. Thermal processes that influence the underlying structure of solids. Using materials in the engineering design process.
Student team investigations of thermal and mechanical systems emphasizing definition, planning, design, and execution of experiments involving system modeling and analysis. Written reports and oral presentations are required.
Special topics or projects of an experimental, analytical, or creative nature. May be repeated up to 16 credit hours.
Continuation and completion of senior project begun in ME 410.
Steady state and transient conduction; external and internal forced convection and free convection; radiation; heat exchanger design.
Linear feedback control design and analysis for dynamic systems with applications; examples taken from applications encountered by mechanical and manufacturing engineers. Time and frequency response techniques. System performance analysis.
Thermodynamic analysis, thermo-chemistry, and performance characteristics of spark ignition and compression ignition engines.
Nature and characteristics of solar energy as a renewable energy resource. Solar geometry and radiation. Thermodynamics of solar systems; emphasis on 2nd Law considerations. Performance characteristics of collectors, storage systems, house heating systems, cooling and refrigeration, and photovoltaics. Comprehensive design project. Theory and performance characteristics of solar devices and application to design of a comprehensive solar energy system.
Analysis of statics and dynamics of non-viscous and viscous fluids. Derivation of differential equations of motion. Potential flow; vortex motion; creeping motion; introduction to boundary layer theory; turbulence.
Gas turbine analysis; stationary power plants; turboprop, turbojet, and ramjet engines; rocket propulsion; application of thermodynamics.
Principles of vibrations in one or more degrees of freedom; application to machine members.
Definition and scope of fluid power control systems. Fluid properties. Continuity and power balance equations. Components function, operation, and dynamic performance. Use of perturbation theory for developing linearized transfer functions. Application of conventional control theory.
Review of mechanical testing, 3-D stress-strain relationship, complex and principal states of stress, yielding and fracture under combined stresses, fracture of cracked members, stress and strain based approaches to fatigue, creep damage analysis, and plastic damage analysis as applied to the design of machine elements.
Human body as a mechanical system. Biomechanics of cells, soft issue and hard tissue Biomechanics of movement. Laboratory exercises on design and analysis of implants.
Topics of special interest which may vary each time course is offered. Topic stated in current Schedule of Classes. Graduate students may repeat the course under different topic names up to a maximum of 9 credits.
Research on a project selected by student and advisor.
Individual study on a topic selected by the student with advisor approval. Integration and application of research. Student must produce a product such as a software program or journal article
This course meets a Core Curriculum requirement.
OC - Communication - Oral Communication
W1 - Communication - Writing 1
W2 - Communication - Writing 2
FA - Fine Arts
GS - Global Perspective - Global Systems
WC - Global Perspective - World Cultures
HU - Humanities
NS - Knowledge and Reasoning in the Natural Sciences
SB - Knowledge and Reasoning in the Social and Behavioral Sciences
MI - Multidisciplinary Integration
QR - Quantitative Reasoning
This section meets a Core Curriculum requirement.
EL - Experiential Learning
IL - Integrative Learning
WI - Writing Intensive
Picture of Instructor


Choose a different department

Choose a different semester

Search Class Database

Course Delivery Method Definitions