Bradley Logo

Schedule of Classes

 

Spring Semester 2022

 

Mechanical Engineering
Jeries J Abou-Hanna • Business and Enginee 3252 • 309-677-2725
M E102Engineering Design Graphics (2 hours)
Prerequisite: Enrolled as a mechanical engineering major; Minimum of C in ME 101 or equivalent with consent of instructor.
 01 Tu9:00 AM -9:50 AM BEC3160 Kalyani Nair  
 Registration required in lecture & lab (A or B or C).
 02 Tu12:00 PM -12:50 PM BEC3226 Kalyani Nair  
 Registration required in lecture & lab (A or B or C).
 A Tu1:00 PM -2:50 PM BEC3225 Kalyani Nair  
 B Tu3:00 PM -4:50 PM BEC3225 Kalyani Nair  
 C Th1:00 PM -2:50 PM BEC3225 Kalyani Nair  
M E200Engineering Co-Op (0 hours)
Prerequisite: Sophomore standing in the College of Engineering and Technology, 2.0 overall grade point average at Bradley, approval of engineering and technology Co-op coordinator and Co-op advisor.
 01 *R* Arr     Julie Reyer  
M E273Computational Methods in ME (3 hours)
Prerequisite: Minimum grade of C in both PHY 110 and MTH 223.
Corequisite: MTH 224.
 01 TT10:30 AM -11:45 AM BEC3226 Kelly R Roos  
 02 Canceled
 A Canceled
 B Canceled
M E280Introduction Biomedical EngineeringCore: MI(3 hours)
Prerequisite: Science and Engineering Majors
 01 TT10:30 AM -11:45 AM BEC2138 Jacqueline Henderson  
M E301Thermodynamics I (3 hours)
Prerequisite: Minimum grade of C in CHM 110, 111; Minimum grade of C in PHY 201; Minimum grade of C in MTH 223.
 01 MW10:30 AM -11:45 AM BEC2254 Ahmad Fakheri  
 and        BEC2258      
 02 TT1:30 PM -2:45 PM BEC2259 Ahmad Fakheri  
M E302Thermodynamics II (2 hours)
Prerequisite: minimum grade of C in ME 301.
 01 MW8:00 AM -8:50 AM BEC3226 David Zietlow  
 02 MW2:00 PM -2:50 PM BEC4140 David Zietlow  
M E303Instrumentation and Measurement (3 hours)
Prerequisite: COM 103, ECE 227
Corequisite: M E 273, M E 301
 01 TT9:00 AM -10:15 AM BEC2259 Dean Kim  
 Registration required in lecture & lab (A or B or C).
 A Tu12:00 PM -1:50 PM BEC3248 Dean Kim  
 B Tu2:00 PM -3:50 PM BEC3248 Dean Kim  
 C Th12:00 PM -1:50 PM BEC3248 Dean Kim  
M E308Thermodyn Fluid Flow (4 hours)
Prerequisite: Minimum grade of C in ME 301, MTH 224
 01 MWF1:00 PM -1:50 PM BEC2132 Saeid Vafaei  
 Registration required in lecture & lab (A or B or C).
 02 MWF3:00 PM -3:50 PM BEC2259 Saeid Vafaei  
 Registration required in lecture & lab (A or B or C).
 40 MWF1:00 PM -1:50 PM BEC0250 Martin Morris  
 and Th2:00 PM -3:50 PM     BEC0250      
 A F8:00 AM -9:50 AM BEC0250 Saeid Vafaei  
 B Th10:00 AM -11:50 AM BEC0250 Saeid Vafaei  
 C Th12:00 PM -1:50 PM BEC0250 Saeid Vafaei  
M E341Engineering Systems Dynamics (3 hours)
Prerequisite: Minimum grade of C in PHY 201; Minimum grade of C in MTH 224; Minimum grade of C in CE 250.
 01 MWF2:00 PM -2:50 PM BEC2132 Shannon James Timpe  
M E342Design of Machine Elements (3 hours)
Prerequisite: Minimum grade of C in CE 270 and ME 351; prerequisite or concurrent enrollment in ME 303
 01 MW1:30 PM -2:45 PM BEC3226 Abdalla M Elbella  
 02 TT9:00 AM -10:15 AM BEC4120 Abdalla M Elbella  
M E344Kinematics and Dynamics of Machines (3 hours)
Prerequisite: ME 273, CE 250.
 01 MW10:30 AM -11:45 AM BEC4140 Jacqueline Henderson  
 02 MW12:00 PM -1:15 PM BEC3226 Jacqueline Henderson  
M E351Engineering Materials Science I (3 hours)
Prerequisite: Minimum grade of C in PHY 110; Minimum grade of C in CHM 112 or Minimum grade of C in CHM 116.
Corequisite: PHY 201.
 01 MWF9:00 AM -9:50 AM BEC3224 Shannon James Timpe  
M E403Mechanical Engineering Systems Laboratory (3 hours)
Prerequisite: Minimum grade of C in both ME 303 and CE 270
Corequisite: 300-level English composition, ME 415, ME 441
Registration required in lecture & lab (A or B or C).
 01 MW9:00 AM -9:50 AM BEC1170 Kelly R Roos  
 Enrollment requires graduation during or before August 2022.
 A M10:00 AM -11:50 AM BEC3261 Kelly R Roos  
 Enrollment requires graduation during or before August 2022.
 B M2:00 PM -3:50 PM BEC3261 Kelly R Roos  
 Enrollment requires graduation during or before August 2022.
 C W10:00 AM -11:50 AM BEC3261 Kelly R Roos  
 Enrollment requires graduation during or before August 2022.
M E409Mechanical Engineering Projects (1 to 4 hours)
Prerequisite: Consent of instructor.
 01 *R* Arr     Staff  
 02 *R* Arr     Kelly R Roos  
 03 Arr     Martin Morris  
 04 *R* Arr  BEC0100 Shannon James Timpe  
M E411Mechanical Engineering Senior Design Project II (2 hours)
Prerequisite: ME 410. Instructor consent may be required.
Register for section of team number and a lab (A or B or C).
 01 TT12:00 PM -12:50 PM BEC1260 Martin Morris  
 02 TT12:00 PM -12:50 PM BEC1260 Martin Morris  
 03 TT12:00 PM -12:50 PM BEC1260 Martin Morris  
 04 TT12:00 PM -12:50 PM BEC1260 Martin MorrisCore: EL,WI 
 05 TT12:00 PM -12:50 PM BEC1260 Brian BarneyCore: EL,WI 
 06 TT12:00 PM -12:50 PM BEC1260 Jeries J Abou-Hanna  
 07 TT12:00 PM -12:50 PM BEC1260 Brian BarneyCore: EL,WI 
 08 TT12:00 PM -12:50 PM BEC1260 Brian BarneyCore: EL,WI 
 09 TT12:00 PM -12:50 PM BEC1260 Jeries J Abou-HannaCore: EL,WI 
 10 TT12:00 PM -12:50 PM BEC1260 Jeries J Abou-HannaCore: EL,WI 
 11 TT12:00 PM -12:50 PM BEC1260 Brian BarneyCore: EL,WI 
 12 TT12:00 PM -12:50 PM BEC1260 Jeries J Abou-Hanna  
 13 TT12:00 PM -12:50 PM BEC1260 Jeries J Abou-HannaCore: EL,WI 
 14 TT12:00 PM -12:50 PM BEC1260 Martin MorrisCore: EL,WI 
 15 TT12:00 PM -12:50 PM BEC1260 Brian BarneyCore: EL,WI 
 A F2:00 PM -4:00 PM BEC1260 Martin MorrisCore: EL,WI 
 B F2:00 PM -4:00 PM BEC1260 Jeries J Abou-HannaCore: EL,WI 
 C F2:00 PM -4:00 PM BEC1260 Brian BarneyCore: EL,WI 
M E415Introduction to Heat Transfer (3 hours)
Prerequisite: ME 302. C or better in ME 308.
 01 TT10:30 AM -11:45 AM BEC4120 Mark Moeckel  
 02 TT3:00 PM -4:15 PM BEC2259 Mark Moeckel  
M E441Mechanical Control Systems (3 hours)
Prerequisite: ME 341. ECE 227.
 01 MW10:30 AM -11:45 AM BEC4120 Dean Kim  
 02 TT5:00 PM -6:15 PM BEC4140 Dean Kim  
M E448Computer Aided Design in Mechanical Engineering (3 hours)
Prerequisite: senior standing in ME or consent of instructor.
 01 MW10:30 AM -11:45 AM BEC2180 Abdalla M Elbella  
M E503Internal Combustion Engines (3 hours)
Prerequisite: ME 301 and ME 302; or graduate standing.
 01 MW12:00 PM -1:15 PM BEC1150 Mark Moeckel  
M E509Solar Engineering (3 hours)
Prerequisite: ME 415 or consent of instructor.
 01 TT10:30 AM -11:45 AM BEC4160 David Zietlow  
M E515Intermediate Heat Transfer (3 hours)
Prerequisite: ME 415; or graduate standing.
 01 MW7:30 AM -8:45 AM BEC4160 Saeid Vafaei  
M E521Intermediate Fluid Mechanics (3 hours)
Prerequisite: MTH 224 and ME 308; or graduate standing.
 01 MW3:00 PM -4:15 PM BEC2132 Ahmad Fakheri  
M E540Advanced Mechanical Vibrations (3 hours)
Prerequisite: ME 341; MTH 224; or graduate standing.
 01 TT9:00 AM -10:15 AM BEC4160 Shannon James Timpe  
M E554Fracture of Solids (3 hours)
Prerequisite: M E 354 and C E 270; or graduate standing.
 01 Canceled
M E557Advanced Design of Machine Elements (3 hours)
Prerequisite: ME 342 and ME 351, with a minimum grade of C; or graduate standing in ME. Requires consent of instructor if non-ME Student.
 01 TT1:30 PM -2:45 PM BEC3224 Jeries J Abou-Hanna  
M E562Dynamics, Modeling, and Control of Robots (3 hours)
Prerequisite: M E 344, ECE 227; or consent of instructor.
 01 Canceled
M E577Finite Element Methods in Engineering (3 hours)
Prerequisite: Senior standing in ME or consent of instructor; or graduate standing.
 01 Canceled
M E580Biomechanics (3 hours)
Prerequisite: senior or graduate standing in engineering or consent of instructor.
 01 MW3:00 PM -4:15 PM BEC4160 Kalyani Nair  
M E681Research (0 to 6 hours)
 01 *R* Arr     Staff  
 02 Arr     Kalyani Nair  
 03 *R* Arr     Shannon James Timpe  
M E699Thesis (0 to 6 hours)
Prerequisite: consent of department.
 01 *R* Arr     Staff  
 
Principles and methods of graphic communications, integrated with creative design problem solving: multi-view projections; pictorial drawing; fundamentals of descriptive geometry, sections, and dimensioning.
Full-time cooperative education assignment for mechanical engineering students who alternate periods of full-time school with periods of full-time academic or career-related work in industry. Satisfactory/Unsatisfactory.
Computational techniques and programming methods for mechanical engineering problems.
Biomedical Engineering is an interdisciplinary field that encompasses biomechanics, biofluidics, medical imaging, bio-instrumentation etc for applications in the medical field. The content introduces a biological overview of the body, from cells to systems, and design and applications of engineering principles to biological systems. The broad objective of this course is to introduce students to the wide landscape early on in their curriculum.
Emphasis on concepts, laws, and problem solving methodology; properties of materials, especially gases and vapors; simple equations of state; 1st and 2nd laws; introduction to cycles and systems.
Continuation of ME 301 with emphasis on engineering applications: including more detailed analysis of vapor cycles, power cycles, refrigeration cycles, and heat pump cycles, enhanced second law analysis, and more complex processes that include mixtures, humidification, combustion, and equilibrium.
Theory and practice of measurements and instrumentation. Definition of a measurement system that meets specified needs: identification, selection, and specification of instrumentation components. Weekly laboratory.
Thermodynamics of fluid flow. Basic concepts of fluid mechanics; utility of the control volume approach to solving conservation equations governing the behavior of compressible and incompressible fluid flows. Design applications in thermal systems, aerodynamics, and convective heat transfer.
Engineering systems dynamics, including mechanical, electrical, fluid, and thermal elements. Concepts of modeling. Mathematical methods for understanding and creating desired response behavior of linear systems.
Application of stress analysis, deflection analysis, dynamic analysis, and materials to the design of mechanical components and machines. How available manufacturing processes influence nature of machine elements.
Kinematic and dynamic analysis and synthesis of mechanisms and machines; kinematics of linkages, cams and gearing systems; different analysis methods. Static and dynamic forces; balancing of rotating and reciprocating machines. Integration of these topics in solving open-ended design problems.
Understanding how atomic and crystalline structure influences the mechanical properties of metals, polymers, ceramics, composite, and biomedical materials. Thermal processes that influence the underlying structure of solids. Using materials in the engineering design process.
Student team investigations of thermal and mechanical systems emphasizing definition, planning, design, and execution of experiments involving system modeling and analysis. Written reports and oral presentations are required.
Special topics or projects of an experimental, analytical, or creative nature. May be repeated up to 16 credit hours.
Continuation and completion of senior project begun in ME 410.
Steady state and transient conduction; external and internal forced convection and free convection; radiation; heat exchanger design.
Linear feedback control design and analysis for dynamic systems with applications; examples taken from applications encountered by mechanical and manufacturing engineers. Time and frequency response techniques. System performance analysis.
Design of mechanical systems and components enhanced by applications of computer graphics. Computer graphics hardware characteristics; transformation and projection geometry; space curves and surface presentations; solid geometric representations. User application CAD packages for finite element analysis and mechanisms and systems simulation.
Thermodynamic analysis, thermo-chemistry, and performance characteristics of spark ignition and compression ignition engines.
Nature and characteristics of solar energy as a renewable energy resource. Solar geometry and radiation. Thermodynamics of solar systems; emphasis on 2nd Law considerations. Performance characteristics of collectors, storage systems, house heating systems, cooling and refrigeration, and photovoltaics. Comprehensive design project. Theory and performance characteristics of solar devices and application to design of a comprehensive solar energy system.
In-depth treatment of the three modes of heat transfer; design applications. Development of analytical and specific numerical skills needed for solving design problems involving heat transfer.
Analysis of statics and dynamics of non-viscous and viscous fluids. Derivation of differential equations of motion. Potential flow; vortex motion; creeping motion; introduction to boundary layer theory; turbulence.
Principles of vibrations in one or more degrees of freedom; application to machine members.
Mechanical failure caused by stresses, strains, and energy transfers in mechanical parts: conventional design concepts and relationship to occurrence of fracture; mechanics of fracture; fracture toughness; macroscopic and microscopic aspects of fracture; high and low cycle fatigue failures; creep; stress rupture; brittle fracture; wear; case studies of failure analysis. Emphasis on time-dependent failures.
Review of mechanical testing, 3-D stress-strain relationship, complex and principal states of stress, yielding and fracture under combined stresses, fracture of cracked members, stress and strain based approaches to fatigue, creep damage analysis, and plastic damage analysis as applied to the design of machine elements.
Fundamental concepts and methods to analyze, model, and control robotic systems. Kinematics/dynamics, modeling and controller design of robotic arms, mobile robots, and drones. Plant visits to observe robots in action; hands-on practice using Arduino or Raspberry-Pi.
Theory of finite element methods and applications in mechanical engineering: review of matrix algebra and basic theorem of elasticity. Direct formulation of plane truss element and variational formulations of plane stress/strain, axisymmetric solids, flexural beam, and flat plate elements. Element analysis and isoparametric formulation. Applications to problems of stability, vibrations, thermal stress analysis, and fluid mechanics. Computer programming techniques.
Human body as a mechanical system. Biomechanics of cells, soft issue and hard tissue Biomechanics of movement. Laboratory exercises on design and analysis of implants.
Research on a project selected by student and advisor.
Maximum of 6 semester hours total of research and/or thesis may be applied toward the master s degree.
This course meets a Core Curriculum requirement.
OC - Communication - Oral Communication
W1 - Communication - Writing 1
W2 - Communication - Writing 2
FA - Fine Arts
GS - Global Perspective - Global Systems
WC - Global Perspective - World Cultures
HU - Humanities
NS - Knowledge and Reasoning in the Natural Sciences
SB - Knowledge and Reasoning in the Social and Behavioral Sciences
MI - Multidisciplinary Integration
QR - Quantitative Reasoning
This section meets a Core Curriculum requirement.
EL - Experiential Learning
IL - Integrative Learning
WI - Writing Intensive
Picture of Instructor


Choose a different department

Choose a different semester

Search Class Database

Course Delivery Method Definitions