Bradley Logo

Schedule of Classes

 

Spring Semester 2021

 

Mechanical Engineering
Jeries J Abou-Hanna • Business and Enginee 3252 • 309-677-2725
M E102Engineering Design Graphics (2 hours)
Prerequisite: Enrolled as a mechanical engineering major; Minimum of C in ME 101 or equivalent with consent of instructor.
Registration in one lecture and one lab required
 01 Tu9:00 AM -9:50 AM ONLONL Kalyani Nair Online Course
 02 Tu12:00 PM -12:50 PM ONLONL Kalyani Nair Online Course
 A Tu1:00 PM -2:50 PM ONLONL Kalyani Nair Online Course
 B Tu3:00 PM -4:50 PM ONLONL Kalyani Nair Online Course
 C Th1:00 PM -2:50 PM ONLONL Kalyani Nair Online Course
 D Th3:00 PM -4:50 PM ONLONL Kalyani Nair Online Course
M E200Engineering Co-Op (0 hours)
Prerequisite: Sophomore standing in the College of Engineering and Technology, 2.0 overall grade point average at Bradley, approval of engineering and technology Co-op coordinator and Co-op advisor.
 01 *R* Arr     Julie Reyer  
M E273Computational Methods in ME (3 hours)
Prerequisite: Minimum grade of C in both PHY 110 and MTH 223.
Corequisite: MTH 224.
Registration in one lecture and one lab required.
 01 TT10:30 AM -11:45 AM BEC3226 Kelly R Roos  
 02 TT1:30 PM -2:45 PM BEC3226 Kelly R Roos  
 A Th9:00 AM -10:00 AM ONLONL Kelly R Roos Online Course
 B Th12:00 PM -1:00 PM ONLONL Kelly R Roos Online Course
M E280Introduction Biomedical EngineeringCore: MI(3 hours)
Prerequisite: Science and Engineering Majors
 01 TT10:30 AM -11:45 AM BEC1180 Jacqueline Henderson  
M E301Thermodynamics I (3 hours)
Prerequisite: Minimum grade of C in CHM 110, 111; Minimum grade of C in PHY 201; Minimum grade of C in MTH 223.
 01 TT9:00 AM -10:15 AM ONLONL Ahmad Fakheri Online Course
 02 TT1:30 PM -2:45 PM ONLONL Ahmad Fakheri Online Course
M E302Thermodynamics II (2 hours)
Prerequisite: minimum grade of C in ME 301.
 01 MW8:00 AM -8:50 AM BEC3160 David Zietlow  
 02 MW2:00 PM -2:50 PM BEC2259 David Zietlow  
M E303Instrumentation and Measurement (3 hours)
Prerequisite: COM 103, ECE 227
Corequisite: M E 273, M E 301
 01 Canceled
 02 *R* TT9:00 AM -10:15 AM BEC3160 Dean Kim Non-Virtual Course
 and Tu3:00 PM -4:50 PM     BEC3248     Dean Kim 
 Enrollment requires graduation during or before December 2021.
 03 Canceled
 Enrollment requires graduation during or before December 2021.
M E308Thermodyn Fluid Flow (4 hours)
Prerequisite: Minimum grade of C in ME 301, MTH 224
Registration in one lecture and one lab required.
 01 MWF1:00 PM -1:50 PM BEC4120 Saeid Vafaei Non-Virtual Course
 02 MWF3:00 PM -3:50 PM BEC4140 Saeid Vafaei Non-Virtual Course
 A F8:00 AM -9:50 AM BEC0250 Saeid Vafaei Non-Virtual Course
 B Th3:00 PM -5:00 PM BEC0250 Saeid Vafaei Non-Virtual Course
 C Th12:00 PM -2:00 PM BEC0250 Saeid Vafaei Non-Virtual Course
M E341Engineering Systems Dynamics (3 hours)
Prerequisite: Minimum grade of C in PHY 201; Minimum grade of C in MTH 224; Minimum grade of C in CE 250.
 01 MWF2:00 PM -2:50 PM BEC4120 Hancheol Cho  
M E342Design of Machine Elements (3 hours)
Prerequisite: Minimum grade of C in CE 270 and ME 351; prerequisite or concurrent enrollment in ME 303
 01 MW1:30 PM -2:45 PM ONLONL Jeries J Abou-Hanna Online Course
 02 TT9:00 AM -10:15 AM ONLONL Abdalla M Elbella Online Course
M E344Kinematics and Dynamics of Machines (3 hours)
Prerequisite: ME 273, CE 250.
 01 MW9:00 AM -10:15 AM BEC4160 Jacqueline Henderson  
 02 MW12:00 PM -1:15 PM BEC3226 Jacqueline Henderson  
 03 MW9:00 AM -10:15 AM ONLONL Jacqueline Henderson Online Course
M E351Engineering Materials Science I (3 hours)
Prerequisite: Minimum grade of C in PHY 110; Minimum grade of C in CHM 112 or Minimum grade of C in CHM 116.
Corequisite: PHY 201.
 01 MW3:00 PM -4:15 PM BEC3226 Shannon James Timpe  
M E403Mechanical Engineering Systems Laboratory (3 hours)
Prerequisite: Minimum grade of C in both ME 303 and CE 270
Corequisite: 300-level English composition, ME 415, ME 441
 01 MW9:00 AM -9:50 AM STU222A Kelly R Roos Non-Virtual Course
 Enrollment requires graduation during or before August 2021.
 A *R* M10:00 AM -11:50 AM BEC3261 Kelly R Roos Non-Virtual Course
 Enrollment requires graduation during or before August 2021.
 B Canceled
 Enrollment requires graduation during or before August 2021.
 C *R* M2:00 PM -3:50 PM BEC3261 Kelly R Roos Non-Virtual Course
 Enrollment requires graduation during or before August 2021.
M E409Mechanical Engineering Projects (1 to 4 hours)
Prerequisite: Consent of instructor.
 01 *R* Arr     Shannon James Timpe  
M E411Mechanical Engineering Senior Design Project II (2 hours)
Prerequisite: ME 410. Instructor consent may be required.
Register for section of team number and a lab
 01 TT12:00 PM -12:50 PM BEC3226 Julie ReyerCore: EL,WIHybrid Course
 02 TT12:00 PM -12:50 PM BEC4120 Jeries J Abou-HannaCore: EL,WIHybrid Course
 03 TT12:00 PM -12:50 PM BEC1260 Mark MoeckelCore: EL,WIHybrid Course
 04 TT12:00 PM -12:50 PM BEC1260 Mark MoeckelCore: EL,WIHybrid Course
 05 TT12:00 PM -12:50 PM BEC4120 Jeries J Abou-HannaCore: EL,WIHybrid Course
 06 TT12:00 PM -12:50 PM BEC1150 Martin MorrisCore: EL,WIHybrid Course
 07 TT12:00 PM -12:50 PM BEC1260 Mark MoeckelCore: EL,WIHybrid Course
 08 TT12:00 PM -12:50 PM BEC3226 Julie ReyerCore: EL,WIHybrid Course
 09 TT12:00 PM -12:50 PM BEC1260 Mark MoeckelCore: EL,WIHybrid Course
 10 TT12:00 PM -12:50 PM BEC3226 Julie ReyerCore: EL,WIHybrid Course
 11 TT12:00 PM -12:50 PM BEC4120 Jeries J Abou-HannaCore: EL,WIHybrid Course
 12 TT12:00 PM -12:50 PM BEC3226 Julie ReyerCore: EL,WIHybrid Course
 13 TT12:00 PM -12:50 PM BEC1150 Martin MorrisCore: EL,WIHybrid Course
 14 TT12:00 PM -12:50 PM BEC4120 Jeries J Abou-HannaCore: EL,WIHybrid Course
 15 TT12:00 PM -12:50 PM BEC1150 Martin MorrisCore: EL,WIHybrid Course
 16 TT12:00 PM -12:50 PM BEC1150 Martin MorrisCore: EL,WIHybrid Course
 A F2:00 PM -4:00 PM BEC1150 Martin MorrisCore: EL,WIHybrid Course
 and        BEC1180      
 and        BEC1260      
 and        BEC1262      
M E415Introduction to Heat Transfer (3 hours)
Prerequisite: ME 302. C or better in ME 308.
 01 TT10:30 AM -11:45 AM ONLONL Saeid Vafaei Online Course
 02 MW5:00 PM -6:15 PM ONLONL Mark Moeckel Online Course
M E441Mechanical Control Systems (3 hours)
Prerequisite: ME 341. ECE 227.
 01 MW12:00 PM -1:15 PM BEC4160 Dean Kim  
 02 TT5:00 PM -6:15 PM BEC1150 Dean Kim  
 03 MW12:00 PM -1:15 PM ONLONL Dean Kim Online Course
 04 TT5:00 PM -6:15 PM ONLONL Dean Kim Online Course
M E448Computer Aided Design in Mechanical Engineering (3 hours)
Prerequisite: senior standing in ME or consent of instructor.
 01 MW10:30 AM -11:45 AM ONLONL Abdalla M Elbella Online Course
 02 TT3:00 PM -4:15 PM ONLONL Abdalla M Elbella Online Course
M E502Problems in Advanced Dynamics (3 hours)
Prerequisite: ME 341; or graduate standing.
 01 TT3:00 PM -4:15 PM BEC3160 Hancheol Cho  
M E503Internal Combustion Engines (3 hours)
Prerequisite: ME 301 and ME 302; or graduate standing.
 01 TT5:00 PM -6:15 PM ONLONL Mark Moeckel Online Course
M E509Solar Engineering (3 hours)
Prerequisite: ME 415 or consent of instructor.
 01 TT9:00 AM -10:15 AM BEC4160 David Zietlow  
M E520Gas Dynamics (3 hours)
Prerequisite: ME 308; or graduate standing.
 01 TT1:30 PM -2:45 PM BEC4140 Martin Morris  
M E521Intermediate Fluid Mechanics (3 hours)
Prerequisite: MTH 224 and ME 308; or graduate standing.
 01 MW5:00 PM -6:15 PM ONLONL Ahmad Fakheri Online Course
M E540Advanced Mechanical Vibrations (3 hours)
Prerequisite: ME 341; MTH 224; or graduate standing.
 01 MWF9:00 AM -9:50 AM BEC4170 Shannon James Timpe  
M E544Mechanical Systems Analysis (3 hours)
Prerequisite: ME 341; or graduate standing.
 01 Canceled
M E554Fracture of Solids (3 hours)
Prerequisite: M E 354 and C E 270; or graduate standing.
 01 TT1:30 PM -2:45 PM ONLONL Abdalla M Elbella Online Course
M E561Introduction to Robotics (3 hours)
Prerequisite: Graduate or senior standing in engineering or computer science; consent of the instructor
 01 MW12:00 PM -1:15 PM BEC2259 Hancheol Cho  
M E562Dynamics, Modeling, and Control of Robots (3 hours)
Prerequisite: M E 344, ECE 227; or consent of instructor.
 01 Canceled
M E577Finite Element Methods in Engineering (3 hours)
Prerequisite: Senior standing in ME or consent of instructor; or graduate standing.
 01 TT10:30 AM -11:45 AM ONLONL Jeries J Abou-Hanna Online Course
M E580Biomechanics (3 hours)
Prerequisite: senior or graduate standing in engineering or consent of instructor.
 01 MW3:00 PM -4:15 PM BEC2259 Kalyani Nair  
M E591Topics in Mechanical Engineering (3 to 9 hours)
Prerequisite: consent of instructor.
 01 F9:00 AM -12:00 PM BEC3240 Julie Reyer Hybrid Course
 "Robotics Des & Fab"
M E681Research (0 to 6 hours)
 01 *R* Arr     Jeries J Abou-Hanna  
 02 *R* Arr     Abdalla M Elbella  
 03 *R* Arr     Ahmad Fakheri  
 04 *R* Arr     Jacqueline Henderson  
 05 *R* Arr     Hancheol Cho  
 06 *R* Arr     Dean Kim  
 07 *R* Arr     Mark Moeckel  
 08 *R* Arr     Martin Morris  
 09 *R* Arr     Kalyani Nair  
 10 *R* Arr     Kelly R Roos  
 11 *R* Arr     Saeid Vafaei  
 12 *R* Arr     Julie Reyer  
 13 *R* Arr     Shannon James Timpe  
 14 *R* Arr     David Zietlow  
M E682Research (0 to 6 hours)
Prerequisite: consent of instructor.
 01 *R* Arr     Staff  
M E699Thesis (0 to 6 hours)
Prerequisite: consent of department.
 01 *R* Arr     Staff  
 
Principles and methods of graphic communications, integrated with creative design problem solving: multi-view projections; pictorial drawing; fundamentals of descriptive geometry, sections, and dimensioning.
Full-time cooperative education assignment for mechanical engineering students who alternate periods of full-time school with periods of full-time academic or career-related work in industry. Satisfactory/Unsatisfactory.
Computational techniques and programming methods for mechanical engineering problems.
Biomedical Engineering is an interdisciplinary field that encompasses biomechanics, biofluidics, medical imaging, bio-instrumentation etc for applications in the medical field. The content introduces a biological overview of the body, from cells to systems, and design and applications of engineering principles to biological systems. The broad objective of this course is to introduce students to the wide landscape early on in their curriculum.
Emphasis on concepts, laws, and problem solving methodology; properties of materials, especially gases and vapors; simple equations of state; 1st and 2nd laws; introduction to cycles and systems.
Continuation of ME 301 with emphasis on engineering applications: including more detailed analysis of vapor cycles, power cycles, refrigeration cycles, and heat pump cycles, enhanced second law analysis, and more complex processes that include mixtures, humidification, combustion, and equilibrium.
Theory and practice of measurements and instrumentation. Definition of a measurement system that meets specified needs: identification, selection, and specification of instrumentation components. Weekly laboratory.
Thermodynamics of fluid flow. Basic concepts of fluid mechanics; utility of the control volume approach to solving conservation equations governing the behavior of compressible and incompressible fluid flows. Design applications in thermal systems, aerodynamics, and convective heat transfer.
Engineering systems dynamics, including mechanical, electrical, fluid, and thermal elements. Concepts of modeling. Mathematical methods for understanding and creating desired response behavior of linear systems.
Application of stress analysis, deflection analysis, dynamic analysis, and materials to the design of mechanical components and machines. How available manufacturing processes influence nature of machine elements.
Kinematic and dynamic analysis and synthesis of mechanisms and machines; kinematics of linkages, cams and gearing systems; different analysis methods. Static and dynamic forces; balancing of rotating and reciprocating machines. Integration of these topics in solving open-ended design problems.
Understanding how atomic and crystalline structure influences the mechanical properties of metals, polymers, ceramics, composite, and biomedical materials. Thermal processes that influence the underlying structure of solids. Using materials in the engineering design process.
Student team investigations of thermal and mechanical systems emphasizing definition, planning, design, and execution of experiments involving system modeling and analysis. Written reports and oral presentations are required.
Special topics or projects of an experimental, analytical, or creative nature. May be repeated up to 16 credit hours.
Continuation and completion of senior project begun in ME 410.
Steady state and transient conduction; external and internal forced convection and free convection; radiation; heat exchanger design.
Linear feedback control design and analysis for dynamic systems with applications; examples taken from applications encountered by mechanical and manufacturing engineers. Time and frequency response techniques. System performance analysis.
Design of mechanical systems and components enhanced by applications of computer graphics. Computer graphics hardware characteristics; transformation and projection geometry; space curves and surface presentations; solid geometric representations. User application CAD packages for finite element analysis and mechanisms and systems simulation.
Application of analytical and graphical methods to problems involving velocities, accelerations, working and inertia forces.
Thermodynamic analysis, thermo-chemistry, and performance characteristics of spark ignition and compression ignition engines.
Nature and characteristics of solar energy as a renewable energy resource. Solar geometry and radiation. Thermodynamics of solar systems; emphasis on 2nd Law considerations. Performance characteristics of collectors, storage systems, house heating systems, cooling and refrigeration, and photovoltaics. Comprehensive design project. Theory and performance characteristics of solar devices and application to design of a comprehensive solar energy system.
One dimensional flow: wave and shock motion in subsonic and supersonic flow; flow with heat transfer and friction; viscosity effects; similarity. Introduction to multidimensional flow.
Analysis of statics and dynamics of non-viscous and viscous fluids. Derivation of differential equations of motion. Potential flow; vortex motion; creeping motion; introduction to boundary layer theory; turbulence.
Principles of vibrations in one or more degrees of freedom; application to machine members.
Mathematical modeling of mechanical, electrical, pneumatic, hydraulic, and hybrid physical systems emphasizing a unified approach such as the Bond graph technique. LaPlace, state-variable, and matrix formulation of models. Systems response characteristics, prediction, and analysis.
Mechanical failure caused by stresses, strains, and energy transfers in mechanical parts: conventional design concepts and relationship to occurrence of fracture; mechanics of fracture; fracture toughness; macroscopic and microscopic aspects of fracture; high and low cycle fatigue failures; creep; stress rupture; brittle fracture; wear; case studies of failure analysis. Emphasis on time-dependent failures.
Coordinate transformation, forward & inverse kinematics, robot dynamics, robot control, motion planning, actuators and sensors, and robotic vision. A design project is required.
Fundamental concepts and methods to analyze, model, and control robotic systems. Kinematics/dynamics, modeling and controller design of robotic arms, mobile robots, and drones. Plant visits to observe robots in action; hands-on practice using Arduino or Raspberry-Pi.
Theory of finite element methods and applications in mechanical engineering: review of matrix algebra and basic theorem of elasticity. Direct formulation of plane truss element and variational formulations of plane stress/strain, axisymmetric solids, flexural beam, and flat plate elements. Element analysis and isoparametric formulation. Applications to problems of stability, vibrations, thermal stress analysis, and fluid mechanics. Computer programming techniques.
Human body as a mechanical system. Biomechanics of cells, soft issue and hard tissue Biomechanics of movement. Laboratory exercises on design and analysis of implants.
Topics of special interest which may vary each time course is offered. Topic stated in current Schedule of Classes. Graduate students may repeat the course under different topic names up to a maximum of 9 credits.
Research on a project selected by student and advisor.
Individual study on a topic selected by the student with advisor approval. Integration and application of research. Student must produce a product such as a software program or journal article
Maximum of 6 semester hours total of research and/or thesis may be applied toward the master s degree.
This course meets a Core Curriculum requirement.
OC - Communication - Oral Communication
W1 - Communication - Writing 1
W2 - Communication - Writing 2
FA - Fine Arts
GS - Global Perspective - Global Systems
WC - Global Perspective - World Cultures
HU - Humanities
NS - Knowledge and Reasoning in the Natural Sciences
SB - Knowledge and Reasoning in the Social and Behavioral Sciences
MI - Multidisciplinary Integration
QR - Quantitative Reasoning
This section meets a Core Curriculum requirement.
EL - Experiential Learning
IL - Integrative Learning
WI - Writing Intensive
Picture of Instructor


Choose a different department

Choose a different semester

Search Class Database

Course Delivery Method Definitions