Bradley Logo

Schedule of Classes

 

Fall Semester 2024

 

Mechanical Engineering
Julie Reyer • BECC 2225 • 309-677-2709
M E101Foundations of Mechanical Engineering (2 hours)
Prerequisite: Consent of instructor or department chair.
 01 M1:00 PM -1:50 PM BEC3240 Shannon James Timpe  
 Registration in lecture and lab (A, B, or C) required.
 02 W1:00 PM -1:50 PM BEC3160 Shannon James Timpe  
 Registration in lecture and lab (A, B, or C) required.
 40 TT3:00 PM -4:50 PM BEC2132 Ahmad Fakheri  
 Honors section. Lab included.
 A Th3:00 PM -4:50 PM BEC3261 Shannon James Timpe  
 B M3:00 PM -4:50 PM BEC3261 Shannon James Timpe  
 C Tu3:00 PM -4:50 PM BEC3261 Shannon James Timpe  
M E200Engineering Co-Op (0 hours)
Prerequisite: Sophomore standing in the College of Engineering and Technology, 2.0 overall grade point average at Bradley, approval of engineering and technology Co-op coordinator and Co-op advisor.
 01 *R* Arr     Rick Smith  
M E273Computational Methods in ME (3 hours)
Prerequisite: Minimum grade of C in both PHY 110 and MTH 223.
Corequisite: MTH 224.
 01 TT10:30 AM -11:45 AM BEC3225 Jacqueline Henderson  
 02 *R* TT12:00 PM -1:15 PM BEC2180 Julie Reyer  
M E301Thermodynamics I (3 hours)
Prerequisite: Minimum grade of C in CHM 110, 111; Minimum grade of C in PHY 201; Minimum grade of C in MTH 223.
 01 MW5:00 PM -6:15 PM BEC3160 Ahmad Fakheri  
M E302Thermodynamics II (2 hours)
Prerequisite: minimum grade of C in ME 301.
 01 MW10:00 AM -10:50 AM BEC1150 David Zietlow Hybrid Course
M E303Instrumentation and Measurement (3 hours)
Prerequisite: ECE 227
Corequisite: COM 103, M E 273, M E 301
 01 TT9:00 AM -10:15 AM BEC1150 Dean Kim  
 Registration in lecture and a lab (A, B, C or D) required.
 A Tu12:00 PM -1:50 PM BEC3248 Dean Kim  
 B Tu2:00 PM -3:50 PM BEC3248 Dean Kim  
 C Th12:00 PM -1:50 PM BEC3248 Dean Kim  
 D Th2:00 PM -3:50 PM BEC3248 Dean Kim  
 E Th4:30 PM -6:30 PM BEC3248 Dean Kim  
M E308Thermodyn Fluid Flow (4 hours)
Prerequisite: Minimum grade of C in ME 301, MTH 224
 01 MWF1:00 PM -1:50 PM BEC1150 Fahmidah Ummul Ashraf  
 Registration for lecture and a lab (A or B) required.
 A Th1:00 PM -2:50 PM BEC0250 Fahmidah Ummul Ashraf  
 B Th3:00 PM -4:50 PM BEC0250 Fahmidah Ummul Ashraf  
M E341Engineering Systems Dynamics (3 hours)
Prerequisite: Minimum grade of C in PHY 201; Minimum grade of C in MTH 224; Minimum grade of C in CE 250.
 01 MWF9:00 AM -9:50 AM BEC4120 Dean Kim  
 02 MWF11:00 AM -11:50 AM BEC4120 Abdalla M Elbella  
M E342Design of Machine Elements (3 hours)
Prerequisite: Minimum grade of C in CE 270 and ME 351; prerequisite or concurrent enrollment in ME 303
 01 MW1:30 PM -2:45 PM BEC3226 Kalyani Nair  
M E344Kinematics and Dynamics of Machines (3 hours)
Prerequisite: ME 273, CE 250.
 01 MW3:00 PM -4:15 PM BEC3226 Jacqueline Henderson  
M E351Engineering Materials Science I (3 hours)
Prerequisite: Minimum grade of C in PHY 110; Minimum grade of C in CHM 112 or Minimum grade of C in CHM 116.
Corequisite: PHY 201.
 01 TT9:00 AM -10:15 AM BEC3226 Shannon James Timpe  
 02 TT12:00 PM -1:15 PM BEC3226 Shannon James Timpe  
M E403Mechanical Engineering Systems Laboratory (3 hours)
Prerequisite: Minimum grade of C in both ME 303 and CE 270
Corequisite: 300-level English composition, ME 415, ME 441
 01 TT9:00 AM -9:50 AM BEC3170 Kalyani Nair  
 A Tu10:00 AM -11:50 AM BEC3261 Kalyani Nair  
 B Th10:00 AM -11:50 AM BEC3261 Kalyani Nair  
M E410Mechanical Engineering Senior Project I (3 hours)
Prerequisite: Senior standing in ME. Instructor consent may be required.
 01 TT12:00 PM -12:50 PM BEC1260 Jeries J Abou-HannaCore: WI,EL 
 LabA F2:00 PM -3:50 PM BEC1260 Jeries J Abou-Hanna  
 and               Brian Barney 
 and               Kalyani Nair 
M E415Introduction to Heat Transfer (3 hours)
Prerequisite: ME 302. C or better in ME 308.
 01 MW3:00 PM -4:15 PM BEC4160 Ahmad Fakheri  
M E441Mechanical Control Systems (3 hours)
Prerequisite: ME 341. ECE 227.
 01 MW5:00 PM -6:15 PM BEC4160 Satish Yadav  
M E448Computer Aided Design in Mechanical Engineering (3 hours)
Prerequisite: senior standing in ME or consent of instructor.
 01 TT3:00 PM -4:15 PM BEC3225 Abdalla M Elbella  
 02 TT5:00 PM -6:15 PM BEC3225 Abdalla M Elbella  
M E501Advanced Thermodynamics (3 hours)
Prerequisite: ME 302; or graduate standing.
 01 TT5:00 PM -6:15 PM BEC3226 Mark Moeckel  
M E515Intermediate Heat Transfer (3 hours)
Prerequisite: ME 415; or graduate standing.
 01 MW12:00 PM -1:15 PM BEC4160 Ahmad Fakheri  
M E556Mechanics of Composite Materials (3 hours)
Prerequisite: CE 270; or graduate standing.
 01 TT10:30 AM -11:45 AM BEC3226 Abdalla M Elbella  
M E562Dynamics, Modeling, and Control of Robots (3 hours)
Prerequisite: M E 344, ECE 227; or consent of instructor.
 01 MW5:00 PM -6:15 PM BEC3240 Sam M Kherat  
M E577Finite Element Methods in Engineering (3 hours)
Prerequisite: Senior standing in ME or consent of instructor; or graduate standing.
 01 TT1:30 PM -2:45 PM BEC4160 Jeries J Abou-Hanna  
M E588Human Centered Design (3 hours)
Prerequisite: Senior or graduate standing and consent of instructor
 01 MW9:00 AM -10:15 AM BEC4140 Jacqueline Henderson  
M E681Research (0 to 6 hours)
 01 Arr     Abdalla M Elbella  
 
Nature of mechanical engineering as a profession and as a technological response to human needs. Emphases: design process, problem solving, and engineering experimentation.
Full-time cooperative education assignment for mechanical engineering students who alternate periods of full-time school with periods of full-time academic or career-related work in industry. Satisfactory/Unsatisfactory.
Computational techniques and programming methods for mechanical engineering problems.
Emphasis on concepts, laws, and problem solving methodology; properties of materials, especially gases and vapors; simple equations of state; 1st and 2nd laws; introduction to cycles and systems.
Continuation of ME 301 with emphasis on engineering applications: including more detailed analysis of vapor cycles, power cycles, refrigeration cycles, and heat pump cycles, enhanced second law analysis, and more complex processes that include mixtures, humidification, combustion, and equilibrium.
Theory and practice of measurements and instrumentation. Definition of a measurement system that meets specified needs: identification, selection, and specification of instrumentation components. Weekly laboratory.
Thermodynamics of fluid flow. Basic concepts of fluid mechanics; utility of the control volume approach to solving conservation equations governing the behavior of compressible and incompressible fluid flows. Design applications in thermal systems, aerodynamics, and convective heat transfer.
Engineering systems dynamics, including mechanical, electrical, fluid, and thermal elements. Concepts of modeling. Mathematical methods for understanding and creating desired response behavior of linear systems.
Application of stress analysis, deflection analysis, dynamic analysis, and materials to the design of mechanical components and machines. How available manufacturing processes influence nature of machine elements.
Kinematic and dynamic analysis and synthesis of mechanisms and machines; kinematics of linkages, cams and gearing systems; different analysis methods. Static and dynamic forces; balancing of rotating and reciprocating machines. Integration of these topics in solving open-ended design problems.
Understanding how atomic and crystalline structure influences the mechanical properties of metals, polymers, ceramics, composite, and biomedical materials. Thermal processes that influence the underlying structure of solids. Using materials in the engineering design process.
Student team investigations of thermal and mechanical systems emphasizing definition, planning, design, and execution of experiments involving system modeling and analysis. Written reports and oral presentations are required.
Team based investigations of open-ended engineering design problems. Each project will place an emphasis on problem definition, planning, analysis, synthesis, evaluation, and teamwork. The projects may involve experimentation and/or construction of models. Students enrolled in this course are required to be within 3 semesters of graduation and have a minimum ME GPA 2.25.
Steady state and transient conduction; external and internal forced convection and free convection; radiation; heat exchanger design.
Linear feedback control design and analysis for dynamic systems with applications; examples taken from applications encountered by mechanical and manufacturing engineers. Time and frequency response techniques. System performance analysis.
Design of mechanical systems and components enhanced by applications of computer graphics. Computer graphics hardware characteristics; transformation and projection geometry; space curves and surface presentations; solid geometric representations. User application CAD packages for finite element analysis and mechanisms and systems simulation.
Laws and concepts of classical thermodynamics: real gases and equations of state; availability; irreversibility; property relations; potential functions; equilibrium; multicomponent systems.
In-depth treatment of the three modes of heat transfer; design applications. Development of analytical and specific numerical skills needed for solving design problems involving heat transfer.
Mechanical behavior, analysis, and design of various advanced composite materials: introduction to composite materials and their applications; elasticity of anisotropic solids; micromechanics of fiber reinforced composites and particulate composites; short fiber composites; macromechanics of laminated composites; thermal stresses; failure criteria; fracture and fatigue, reliability, testing, and design of composite materials. Emphasis on developing simple microcomputer programs for analysis. Projects involve curing and testing composites.
Fundamental concepts and methods to analyze, model, and control robotic systems. Kinematics/dynamics, modeling and controller design of robotic arms, mobile robots, and drones. Plant visits to observe robots in action; hands-on practice using Arduino or Raspberry-Pi.
Theory of finite element methods and applications in mechanical engineering: review of matrix algebra and basic theorem of elasticity. Direct formulation of plane truss element and variational formulations of plane stress/strain, axisymmetric solids, flexural beam, and flat plate elements. Element analysis and isoparametric formulation. Applications to problems of stability, vibrations, thermal stress analysis, and fluid mechanics. Computer programming techniques.
Principles and practices of biomedical engineering for integration into design. The focus on human limits including physical, visual, cognitive and medical will serve as the basis for technology evaluations and case studies. Design and analysis with team-based, open ended client specific project.
Research on a project selected by student and advisor.
This course meets a Core Curriculum requirement.
OC - Communication - Oral Communication
W1 - Communication - Writing 1
W2 - Communication - Writing 2
FA - Fine Arts
GS - Global Perspective - Global Systems
WC - Global Perspective - World Cultures
HU - Humanities
NS - Knowledge and Reasoning in the Natural Sciences
SB - Knowledge and Reasoning in the Social and Behavioral Sciences
MI - Multidisciplinary Integration
QR - Quantitative Reasoning
This section meets a Core Curriculum requirement.
EL - Experiential Learning
IL - Integrative Learning
WI - Writing Intensive
Picture of Instructor


Choose a different department

Choose a different semester

Search Class Database

Course Delivery Method Definitions